Na(+)/H(+) exchange inhibition with HOE642 improves postischemic recovery due to attenuation of Ca(2+) overload and prolonged acidosis on reperfusion.
نویسندگان
چکیده
BACKGROUND Na(+)/H(+) exchange inhibition with HOE642 (cariporide) improves postischemic recovery of cardiac function, but the mechanisms of action remain speculative. Because Na(+)/H(+) exchange is activated on reperfusion, it was hypothesized that its inhibition delays realkalinization and decreases intracellular Na(+) and, via Na(+)/Ca(2+) exchange, Ca(2+) overload. Attenuated Ca(2+) overload and prolonged acidosis are known to be cardioprotective. METHODS AND RESULTS Left ventricular developed and end-diastolic pressures were measured in isolated buffer-perfused rat hearts subjected to 30 minutes of no-flow ischemia and 30 minutes of reperfusion (37 degrees C) with or without 1 micromol/L HOE642 added to the perfusate 15 minutes before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) and pH(i) were measured with aequorin (n=10 per group) and (31)P NMR spectroscopy (n=6 per group), respectively. HOE642 did not affect preischemic mechanical function, [Ca(2+)](i), or pH(i). Mechanical recovery after 30 minutes of reperfusion was substantially improved with HOE642: left ventricular developed pressure (in percent of preischemic values) was 92+/-3 versus 49+/-7 and left ventricular end-diastolic pressure was 16+/-3 versus 46+/-5 mm Hg (P<0.05 for HOE642-treated versus untreated hearts). End-ischemic [Ca(2+)](i) was significantly lower in HOE642-treated than in untreated hearts (1.04+/-0.06 versus 1.84+/-0. 02 micromol/L, P<0.05). Maximal intracellular Ca(2+) overload during the first 60 seconds of reperfusion was attenuated with HOE642 compared with untreated hearts: 2.0+/-0.3 versus 3.2+/-0.3 micromol/L (P<0.05). pH(i) was not different at end ischemia ( approximately 5.9+/-0.05). Realkalinization was similar in the first 90 seconds of reperfusion and significantly delayed in the next 3 minutes (eg, 6.8+/-0.07 in HOE642-treated hearts compared with 7. 2+/-0.07 in untreated hearts; P<0.05). CONCLUSIONS HOE642 improves postischemic recovery by reducing Ca(2+) overload during ischemia and early reperfusion and by prolonging postischemic acidosis.
منابع مشابه
Na/H Exchange Inhibition With HOE642 Improves Postischemic Recovery due to Attenuation of Ca Overload and Prolonged Acidosis on Reperfusion
Background—Na/H exchange inhibition with HOE642 (cariporide) improves postischemic recovery of cardiac function, but the mechanisms of action remain speculative. Because Na/H exchange is activated on reperfusion, it was hypothesized that its inhibition delays realkalinization and decreases intracellular Na and, via Na/Ca exchange, Ca overload. Attenuated Ca overload and prolonged acidosis are k...
متن کاملEffect of vacuolar proton ATPase on pHi, Ca2+, and apoptosis in neonatal cardiomyocytes during metabolic inhibition/recovery.
Recently, we found that vacuolar proton ATPase (VPATPase) operates in cardiomyocytes as a complementary proton-extruding mechanism. Its activity was increased by preconditioning with resultant attenuation of intracellular acidification during ischemia. In this study, we examined whether VPATPase-mediated proton efflux during metabolic inhibition/recovery may spare Na+ overload via Na+-H+ exchan...
متن کاملNa+/H+ exchange inhibitor cariporide attenuates skeletal muscle infarction when administered before ischemia or reperfusion.
Administration of Na(+)/H(+) exchange isoform-1 (NHE-1) inhibitors before ischemia has been shown to attenuate myocardial infarction in several animal models of ischemia-reperfusion injury. However, controversy still exists as to the efficacy of NHE-1 inhibitors in protection of myocardial infarction when administered at the onset of reperfusion. Furthermore, the efficacy of NHE-1 inhibition in...
متن کاملThe effects of Na movement on surgical myocardial protection: the role of the Na+-H+ exchange system and Na-channel in the development of ischemia and reperfusion injury.
OBJECTIVES We investigated whether the Na+-H+ exchange inhibitor, HOE642 (Hoe), and/or the Na channel blocker, mexiletine (Mex), enhance a cardioprotective effect on St. Thomas' Hospital cardioplegic solution (STS) to clarify the mechanism by which intracellular Na+ is accumulated after cardioplegic arrest. MATERIALS AND METHODS Isolated working rat hearts were perfused with Krebs-Henseleit b...
متن کاملCardioplegic Strategies for Calcium Control
Background—Ca overload plays an important role in the pathogenesis of cardioplegic ischemia-reperfusion injury. The standard technique to control Ca overload has been to reduce Ca in the cardioplegic solution (CP). Recent reports suggest that Na/H exchange inhibitors can also prevent Ca overload. We compared 4 crystalloid CPs that might minimize Ca overload in comparison with standard Mg-contai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 101 23 شماره
صفحات -
تاریخ انتشار 2000